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Abstract

[TODO]

1 Introduction

The project explores two different approaches for speech recognition: Convolutional Neural Networks
(CNN) and Quantum CNN. These approaches are chosen to compare their respective performance
and determine the effectiveness of quantum-inspired techniques in speech recognition tasks. By
evaluating and contrasting the results obtained from both approaches, we can gain insights into the
potential advantages and limitations of each method.

In addition to speech recognition, the project focuses on speech generation using Variational Autoen-
coders (VAEs). VAEs are powerful generative models that can learn latent representations of data
and generate new samples based on these learned representations. By employing a VAE, we aim to
generate speech features that can subsequently be transformed into realistic speech waveforms.

The utilization of probabilistic models and the VAE approach enables us to capture the underlying
distribution of speech data, allowing for both recognition and generation tasks. This project’s method-
ology involves training the VAE on the dataset of isolated words, learning the latent representations,
and generating new speech features based on these representations.

The report aims to provide a comprehensive analysis of the performance of both the CNN and
Quantum CNN approaches for speech recognition. Additionally, it delves into the capabilities of
VAEs in generating speech features. By comparing the results and evaluating various metrics, such as
accuracy, efficiency, and quality, we can draw conclusions regarding the strengths and weaknesses of
each approach.

1.1 Quantum Introduction

To give context to our work we briefly overview Quantum Computing, this summary will not be an
exhaustive explanation but it should provide enough information to understand the rest of the report.

The fundamental elements of quantum computation are the Qubits (from Quantum Bits), which are
the basic unit of information as the bits are in classical systems, in the classical world the information
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in a bit can be 0 or 1. In the quantum world, we can have multiple states at once, this phenomenon is
known as superposition, and we associate a probability to the possible states.[8]

Another important property of qubits is entanglement, it is a quantum mechanical phenomenon
in which two or more particles (Qubits) become correlated in a way that their properties become
dependent on each other. This means that if one of the particles is observed or measured, it will affect
the state of the other particles, this has important implications for quantum computing, as entangled
qubits can be used to create quantum circuits that perform operations in parallel.

The building blocks of computations are the Quantum Gates, which are like logical gates but they
operate on qubits instead of bits. They can manipulate the state of qubits by changing the probabilities
of measuring them in different states. Some examples of quantum gates are the Hadamard gate which
puts a qubit into a superposition state, and the phase gate, which introduces a relative phase shift
between the 0 and 1 states of a qubit.

With quantum gates, we can create quantum circuits, where each gate performs a specific operation
on one ore qubit changing its state and in the end, each qubit is measured. A notable example of
quantum circuits to solve real-world problems is for example the Variational Quantum Eigensolver
(VQE) algorithm [7] which is a classical-quantum circuit to calculate the ground state energy of
a molecule. It is particularly useful for molecules that are too complex to be solved exactly with
classical computers, therefore it provides a powerful tool for quantum chemistry research and drug
discovery.

To develop programs there are several solutions, Microsoft proposed its own language called Q#[1]
based on C#. Another option is OpenQASM, which is comparable to Verilog as a level of abstraction.
IBM instead developed a framework called Qiskit[2], where developers can write quantum circuits in
Python. A rather large area of research focuses on compilers that allow developers and programmers
to write, build, and execute software for quantum computers.

1.2 Quantum Machine Learning

The advent of quantum information opened a new field: quantum machine learning (QML), combining
principles from quantum physics and machine learning to develop algorithms and techniques for data
analysis and pattern recognition. The two main quantum properties that bring advantages to QML are
superposition and entanglement, they enable algorithms such as Quantum Support Vector Machine
(QSVM)[4] and Quantum Neural Networks (QNNs)[5], they enhance feature representation, they
enable quantum systems to perform parallel computations on multiple states simultaneously.

Quantum machine learning algorithms can also exploit interference effects to find optimal solutions
efficiently: Quantum algorithms like Quantum Annealing and the Quantum Approximate Optimiza-
tion Algorithm (QAOA)[? ] leverage interference to search through the solution space and find the
global minimum or maximum with higher probability.

1.3 Hybrid quantum-classical Neural Networks and state of the art

In this project, we will use quantum computing together with CNNs to make a QNN,

A Convolutional Neural Network (CNN) is a deep learning model designed for processing grid-like
data, such as images or spectrograms. It utilizes convolutional layers to extract local patterns and
features, pooling layers for downsampling and preserving spatial relationships, and fully connected
layers for capturing global dependencies. CNNs excel at analyzing structured data by automatically
learning hierarchical representations and making predictions based on the learned features. They are
commonly used in speech synthesis and other domains.

To focus a bit more on what we are going to do, we have to introduce QNNs, they were originally
defined as Quanvolutional neural networks by Henderson et al. [5]. They introduced a new layer that
they have called the quanvolutional layer it is a type of transformational layer that is made up of a
group of quantum filters, in their paper they explore different numbers of filters, this layer operates
like its classical counterpart making feature maps by transforming input data. The difference is how
the feature maps are created, in this case using random quantum circuits. The networks they present
consist of a quanvolutional layer followed by a normal CNN.
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The first layer operates taking spatially local subsections of the tensor as inputs but instead of a
normal matrix multiplication like CNN, they use these inputs as initial states for quantum circuits,
they present the case with random quantum circuits, and the measured output of the circuit is the
local result of the filter.

Quanvolutional layer in a network stack [5]

The advantages they present compared to other QML algorithms are the absence of a QRAM
requirement and resiliency to consistent errors due to noise in quantum systems. Some drawbacks are
not knowing how to encode and decode classical information in a quantum and since we don’t need
memory we could have to execute a large number of quantum circuits, another major drawback is
that at the current state of hardware, we can’t demonstrate a clear quantum advantage. This study
however only uses QNNs for image classification. To get closer to our goal we present part of the
work of Chao-Han Huck Yang et al. in Decentralizing feature extraction with quantum convolutional
neural networks [9] They use QNNs (defined by them as QCNN) for feature extraction for speech
recognition, they also explore decentralized feature extraction for privacy preservation but that’s
out of the scope of this project. The system they propose is composed of a quantum convolutional
layer made up of variational quantum circuits, similar to what we have seen before, and a deep
neural network. A variational quantum circuit is a circuit whose gates can be parameterized by some
variables making its design very accessible and thus resistant to noise and without any requirements
of error correction. In particular, they feed Mel spectrograms to the Quantum layer, and its output is
given to a recurrent neural network with a self-attention encoder, which has been reported as the best
model so far among deep neural networks.

A Recurrent Neural Network (RNN) with attention represents an advanced deep learning architecture
that extends the capabilities of conventional RNNs by integrating an attention mechanism. Unlike the
sequential processing of traditional RNNs, an RNN with attention selectively focuses on pertinent
segments of the input sequence during the output generation phase. By dynamically allocating
attention weights, the model effectively captures long-range dependencies and adeptly handles
sequences of varying lengths. This attention mechanism substantially enhances the model’s capacity
to prioritize pertinent information and yield precise predictions, making it particularly advantageous
in tasks involving speech recognition.

Their results show an improvement in terms of accuracy when using the quantum layer but only for a
certain kernel size (the kernel size has the same meaning as in classical convolutional layers).
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2 Related work

2.1 CNN for speech recognition

Several studies have explored the use of speech recognition models and their applications in various
domains. In the field of speech control, the design and implementation of accurate word-tracking
models have garnered significant attention. A notable contribution in this area is the work presented
by Ayad Alsobhani et al. in [3], which utilized deep convolutional neural network techniques to
develop a robust word-tracking model. Their study focused on six control words (start, stop, forward,
backward, right, left) and incorporated speech recognition features to enhance the performance of the
model.

By training and testing their proposed models on the collected dataset, they achieved an impressive
word classification accuracy of 97.06% even when presented with completely unknown speech
samples. A key differentiating factor of their work is the utilization of a diverse and realistic dataset,
as opposed to relying on pre-existing isolated word datasets commonly used in other studies.

2.2 VAEs for speech synthesis

Variational autoencoders (VAEs) have brought about a paradigm shift in the domain of speech
synthesis by enabling the generation of speech that exhibits high quality and naturalness. VAEs,
constituting generative models comprising an encoder and a decoder network, facilitate the mapping
of input speech features, such as MFCCs or Mel spectrograms, to a lower-dimensional latent space
representation. Through the subsequent decoding process, the original features are reconstructed
from the latent representation, effectively synthesizing speech.

The scholarly contribution of Lu et al. in [6] has exerted a significant impact on the field of VAE-based
speech synthesis. This research endeavor introduces a pioneering approach that merges VAEs with
non-autoregressive modeling for the synthesis of text-to-speech.

Of particular note is the innovative training scheme proposed in the aforementioned study, which
has spurred advancements in both the efficiency and fidelity of speech synthesis. By harnessing
the capabilities of VAEs in conjunction with non-autoregressive modeling, the authors succeed in
enhancing synthesis performance while upholding the integrity of the resulting speech quality.

3 Methods

3.1 Data pre processing

In the data preprocessing phase, the "speech_command" dataset was utilized as the primary data
source. Ten distinct groups of words were randomly selected from this dataset, with each group
consisting of approximately 1,000 samples in the form of .wav files. To facilitate the processing
of audio data, the librosa library was employed, leveraging its loadAudio method to import the
audio waveform and the associated sampling rate for each sample. The subsequent computation of
Mel-frequency cepstral coefficients (MFCC) and Mel spectrogram (MSpec) features for each sample
was accomplished using the corresponding methods provided by the librosa library. To organize the
processed data, an array of dictionaries was created, where each dictionary represented an individual
sample and contained essential information such as the audio waveform, sampling rate, computed
MFCC features, MSpec features, and the corresponding word label. This meticulous preprocessing
procedure ensured the appropriate representation and readiness of the audio data for subsequent
stages of the speech synthesis process, facilitating further analysis and modeling.

3.2 Speech recognition method

We designed our CNN architecture specifically for speech recognition tasks. The architecture
consisted of several key components:

• Convolutional layers: We experimented with different numbers of convolutional layers to
capture different levels of abstraction in the input spectrograms. The number of filters for
each convolutional layer was a parameter in our grid search, allowing us to explore the
impact of varying filter sizes on the model’s performance.

4



• Activation functions: We utilized rectified linear units (ReLU) as the activation function
after each convolutional layer to introduce non-linearity into the model.

• Pooling layers: To reduce the spatial dimensions and extract the most salient features, we
included max pooling layers after certain convolutional layers.

• Fully connected layers: After the convolutional layers, we added fully connected layers to
perform classification based on the extracted features. The number of fully connected layers
and their dimensions were parameters we tuned during the grid search process.

• Regularization techniques: We employed regularization techniques such as dropout and L2
regularization to prevent overfitting and improve generalization of the model.

To find the optimal combination of hyperparameters, we performed a grid search. We systematically
varied the parameters mentioned above and evaluated the model’s performance on a separate validation
set. The grid search allowed us to explore different combinations of hyperparameters efficiently and
identify the best configuration that yielded the highest accuracy on the validation set.

During training, we employed various optimization techniques to update the model’s weights and
biases. The type of optimizer was one of the parameters included in the grid search. We experimented
with popular optimization algorithms such as Stochastic Gradient Descent (SGD), Adam, and
RMSprop, comparing their performance in terms of convergence speed and accuracy.

3.3 Quantum recognition method

We trained two different models to explore Quantum Neural Networks, the first one is an Attention
Recurrent Neural Network, the second is still the same Attention Recurrent Neural Network but we
added a Quanvolutional layer at the beginning.

The Attention RNN is composed of two layers of bi-directional long short-term memory and a
self-attention encoder, this RNN model has been reported as the best among other Deep Neural
Network solutions [9]. Compared to traditional RNN, using attention improves performances for
long sequences.

We added the Quantum Layer as described in the papers explained in paragraph 1.3: it’s similar to a
convolutional layer but it uses variational quantum circuits instead of matrix multiplications. The
quantum computing part has been executed on a simulator (Pennylane) that emulates a Qiskit device,
we ran random circuits on the simulator, as described in the papers explained before.

We trained both models and compared the accuracy and the loss, the results are reported in paragraph
4.2.

3.4 Speech synthesis method

This project leverages the Variational Autoencoder (VAE) as the underlying methodology for speech
synthesis. The VAE architecture comprises an encoder and a decoder network. The encoder consists
of three convolutional layers followed by two linear layers, enabling the extraction of hierarchical
features from the input Mel spectrograms and their transformation into a lower-dimensional latent
space representation. The convolutional layers capture relevant information from the spectrograms,
while the subsequent linear layers further process the extracted features and map them to the latent
space. The encoder outputs two crucial parameters, namely the latent mean and the log-variance,
encoding the distribution of the latent variables.

To compute the latent space representation, the VAE employs the reparameterization trick, facilitating
the generation of samples from the latent variables while maintaining differentiability. This technique
involves sampling from a standard Gaussian distribution and then transforming the samples using the
learned mean and standard deviation parameters obtained from the encoder.

The decoder network in the VAE is responsible for reconstructing the synthesized speech from the
latent space representation. It comprises two linear layers followed by three transpose convolutional
layers. The linear layers take the latent space representation as input and transform it into a higher-
dimensional space. The transpose convolutional layers subsequently upsample the features to
reconstruct the speech spectrograms accurately. The objective of the decoder network is to generate a
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faithful representation of the original input features based on the information encoded in the latent
space.

Figure 1: VAE architecture

During training, the VAE aims to minimize the reconstruction loss, typically quantified using the mean
squared error (MSE) metric. This loss ensures that the synthesized speech features closely resemble
the original input features, promoting accurate speech synthesis. Additionally, a regularization loss is
incorporated using the Kullback-Leibler (KL) divergence. This loss encourages the latent variables
to approximate a standard Gaussian distribution, promoting a regularized latent space that enables
meaningful manipulation and interpolation of speech features during the synthesis process.

The training of the VAE model utilizes backpropagation and Adam optimization to iteratively
update the model parameters and minimize the composite loss function, which includes both the
reconstruction loss and the regularization loss. The VAE is trained on a dataset consisting of Mel
spectrograms for each sample. The training process involves presenting the input features to the
model, computing the reconstruction and regularization losses, and updating the model parameters
accordingly. This iterative training procedure continues until the VAE achieves the desired level of
performance in speech synthesis.

4 Experiments and Results

4.1 CNN for speech recognition

Table 1 presents the validation accuracies achieved by different model configurations in the speech
recognition task. All the models have 3 layers and they vary in terms of the number of filters, the
optimizer used, the number of nodes, the batch size, and the presence of regularization.

In terms of architecture, the best performing model is model 5, with 3 layers, 128 filters, SGD
optimizer, 64 nodes, a batch size of 32, and dropout regularization. It achieved an impressive accuracy
of 0.969 on the validation set. This suggests that a deeper network with a larger number of filters can
capture more complex patterns in the data, leading to better performance. Additionally, the use of
dropout regularization helps in reducing overfitting and improving generalization.

4.2 Quantum for speech recognition

In the following picture (Figure 2) we report the accuracy and the loss for both the Attention RNN
model and the Quantum Attention RNN model. We are very satisfied with these results because, even
if we didn’t manage to overcome the baseline accuracy adding a quantum layer, we still got very
good results close to 0.95 of accuracy and below 0.3 of loss, we also noticed how the quantum model
converged faster than the classical one.
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num_filters optimizer num_nodes batch_size regularization Accuracy
64 SGD 64 32 Dropout 0.964
64 SGD 128 32 Dropout 0.957
64 Adam 64 32 Dropout 0.966
64 Adam 128 32 Dropout 0.944

128 SGD 64 32 Dropout 0.969
128 SGD 64 32 None 0.803
128 SGD 64 32 None 0.952
128 SGD 128 32 Dropout 0.965
128 Adam 64 32 Dropout 0.942
128 Adam 64 128 Dropout 0.952
128 Adam 128 32 Dropout 0.957
128 Adam 128 64 Dropout 0.947
128 Adam 128 128 Dropout 0.958

Table 1: Grid Search results with Validation Accuracies for Different Model Configurations.

Figure 2: Accuracy and loss for Attention RNN and Quantum Attention RNN

4.3 VAE for speech synthesis

In this section, we present the experiments conducted to evaluate the effectiveness of the Variational
Autoencoder (VAE) model for speech synthesis.
The model was trained for 10 epochs using an Adam optimizer with a learning rate of 0.001. The
training dataset was divided into mini-batches of size 32 for efficient computation. The loss function
employed a combination of reconstruction loss and KL divergence loss, balancing the fidelity of
reconstructions and the regularization of the latent space.

The following results were obtained:
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Figure 3: VAE loss trend

The trained VAE model demonstrated the potential for generalization by generating plausible recon-
structions for unseen speech samples. This suggests that the model successfully learned a useful
representation of speech and can synthesize speech-like outputs. The following results highlight the
efficacy of the VAE model in speech synthesis tasks:

Figure 4: generated spectograms
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5 Discussion and Conclusions

The experiments we did on quantum convolutional neural networks show that hybrid quantum-
classical solutions should be explored more and we expect more research on this field in the coming
years as quantum computers will be more reliable and accessible to researchers. We didn’t get a clear
quantum advantage but our results leave a door open to future developments.

Our study demonstrates the efficacy of the Variational Autoencoder (VAE) model for speech synthesis.
The VAE successfully reconstructs speech spectrograms with high fidelity and learns a meaningful
latent space representation. These findings highlight the potential of the VAE in generating high-
quality speech-like outputs and its ability to generalize to unseen samples. Further research can focus
on refining the model architecture and exploring alternative loss functions to enhance its performance.
Overall, the VAE presents a promising approach to speech synthesis with implications for various
applications in the field.

Additionally, compelling evidence has been presented regarding the efficacy of employing a Convolu-
tional Neural Network (CNN) architecture for the purpose of speech recognition. The performance
of our model yielded highly favorable outcomes, exhibiting an accuracy rate of 96.9%. Remarkably,
these results were achieved with minimal fine-tuning, thereby suggesting the potential for further
enhancements through an expanded grid search.
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6 Appendix

In response to the feedback received during the peer review process, we have made an addition to
enhance the clarity and comprehensibility of the methods section. Specifically, we have included an
image that illustrates the architecture of the model used in our study. This visual representation serves
to provide a more intuitive understanding of the model’s components and their interconnections.
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